

0040-4020(95)00565-X

Preparation of Olefins and Acetylenes via Reductive Elimination with SmI₂-HMPA

Masataka Ihara, Shuichi Suzuki,† Takahiko Taniguchi, Yuji Tokunaga, and Keiichiro Fukumoto*

Pharmaceutical Institute, Tohoku University, Aobayama, Sendai 980-77, Japan

Abstract: Reaction of β -hydroxy or acetoxy sulfones with Sml_2 in the presence of HMPA caused effectively reductive elimination to provide olefins. Treatment of enol phosphates, readily synthesized from β -hydroxy sulfones via keto sulfones, under the same conditions efficiently produced mono- and disubstituted acetylenes.

Introduction

Transformation of carbonyl compounds to olefins is a useful carbon-carbon bond forming method in organic synthesis. Among numerous reports for synthesis of olefins, ¹ Julia olefination² is frequently utilized as a regio- and stereoselective preparation,³ and the synthetic significance is reflected by its widespread use in total syntheses of natural products. The Julia's procedure was also used for preparation of acetylenes.^{4,5} The central to their utility is the easy preparation of β -hydroxy sulfones and β -keto sulfones by coupling reaction of sulfones with carbonyl compounds (Scheme 1).⁶ We now report improved methods for syntheses of various olefins and acetylenes employing the reductive elimination with SmI₂-HMPA.⁷

Scheme 1

$$R^{1}-CHO + R^{2}-CH_{2}SO_{2}Ar \xrightarrow{base} R^{1}-CH-CH-R^{2} \longrightarrow R^{1}-CH=CH-R^{2}$$

$$reduction \mid oxidation$$

$$R^{1}-COX + R^{2}-CH_{2}SO_{2}Ar \xrightarrow{base} R^{1}-C-CH-R^{2} \longrightarrow R^{1}-C=C-R^{2}$$

Results and Discussion

Preparation of olefins. β -Hydroxy or acetoxy sulfones for the key reductive elimination were readily prepared through coupling of corresponding carbonyl compounds (19–23) with sulfones 4, 10^8 and 15 as summarized in Scheme 2. Sulfone 4 was prepared from 3-chloro-1-propanol 1 as follows. After protection of hydroxy group of 1 with *tert*-butyldiphenylsilyl (TBDPS) group (81% yield), treatment of 2 with thiophenol (PhSH) in the presence of sodium hydride (NaH) in DMF gave 3 in quantitative yield. Oxidation of 3 with *m*-CPBA afforded sulfone 4 in 96% yield. On the other hand, sulfone 15 was synthesized starting with the known alcohol 13.9 After conversion of 13 into sulfide 14 by means of the Hata's method 10 in 95% yield,

oxidation of 14 with OXONE®, 11 followed by reprotection with *tert*-butyldimethylsilyl (TBDMS) group provided sulfone 15 in 96% overall yield.

Reaction of 4 with carbonyl compounds 19-21 in the presence of ⁿBuLi afforded hydroxy sulfones 5-7 in 90, 99 and 94% yields, respectively. Hydroxy sulfone 11 was also prepared in 98% yield by treatment of p-anisaldehyde 22 with sulfone 10⁸ as above. Coupling of 15 with aldehydes 19 and 23¹² was carried out using LDA to give 16 and 17 in 92 and 80% yields, respectively. Furthermore, resulting hydroxy sulfones 5, 6, 11 and 16 were converted into acetates 8, 9, 12 and 18 by the established method in high yields. However, acetylation of 7 and 17 was failed because of their steric hindrance.

Scheme 2

Reductive elimination of β -substituted sulfones was carried out with SmI₂¹³ in the presence of HMPA¹⁴ in THF at ambient temperature (Table 1). In order to compare with the ordinary method, several results using Na(Hg) in the presence of Na₂HPO₄¹⁵ in a 1:1 (v/v) mixture of THF–MeOH are also listed.

There were some reports about reduction of sulfones using SmI₂ as an electron transfer reagent. Inanaga reported deoxygenation of sulfones with SmI₂-HMPA, ¹⁶ while desulfonylation using the same reagents was observed by Künzer. ¹⁷ Furthermore, Kende recorded a poor result in the reductive elimination of the β -hydroxy phenyl sulfone with SmI₂ without HMPA. ¹⁸

At the beginning of this study, the influence due to reaction temperature was examined. On treatment of acetate 12 for 0.25 h with SmI_2 -HMPA at ambient temperature, a 3:1 mixture of (E)- and (Z)-olefins 25 was obtained in 92% yield (entry 6). On the other hand, the reaction of 12 for 3 h at between -30 and -10 °C gave a 3.6:1 mixture of olefins 25 in 78% yield. It was revealed from the above outcome that ratio of (E)- and (Z)-olefins was not fundamentally changed by the reaction temperature.

In all cases, the SmI_2 -HMPA method gave better results than the method using Na(Hg) as a reductant. Although the reductive elimination of β -hydroxy sulfones with Na(Hg) had provided a less satisfactory result except special cases,³ the present method effectively caused reductive elimination to afford olefins in reasonable yields (entries 1, 5, 9, 10 and 14) except the entry 7. Desulfonated products 30–33 were also produced (31: 35% yield, 33: 31% yield, but 30 and 32 could not be isolated as pure forms). Particularly, it is noteworthy that treatment of 17, acetylation of which was failed, with SmI_2 -HMPA furnished olefin 29 in 82% yield (entry 14). On the other hand, retro aldol type reaction took place to some extent in reactions of 16 and 17 with Na(Hg) as shown in the experimental section (entries 11 and 15).

entry	substrates	reagents ^b	reaction time (h)	olefins	yield (%) (ratio of $E:Z$) ^c
1	5	A	2	24	73 (3:1)
2	5	В	2	24	68 (2.1:1)
3	8	Α	1	24	95 (3.1:1)
4	8	В	2	24	88 (3.7:1)
5	11	Α	2	25	59 (7:1)
6	12	Α	0.25	25	92 (3:1)
7	6	Α	1	26	30 (2.9:1)
8	9	Α	0.5	26	81 (1.1:1)
9	7	Α	0.5	27	53
10	16	Α	2	28	75 (100:0)
11	16	В	3	28	39 (100:0)

83 (100:0)

77 (100:0)

82 (100:0)

58 (100:0)

Table 1. Reductive Elimination of β-Substituted Sulfones ^a

Α

В

A

В

^a All reactions were carried out at ambient temperature.

 $^{^{}b}~$ A: SmI₂, HMPA in THF; B: Na(Hg), Na₂HPO₄ in THF-MeOH (1 : 1 v/v).

Preparation of acctylenes. Enol acetate **39** and enol phosphates **40–43** for reductive elimination were prepared as described in Scheme 3. β-Hydroxy sulfone **36** was synthesized by coupling of sulfone **4** with cyclohexanecarboxaldeyde in 96% yield. Oxidation of hydroxy sulfones **5**, **6** and **36** with PCC in the presence of 4 Å molecular sieves gave β-keto sulfones **34**, **35** and **37** in 93, 94 and 98% yields, respectively. Furthermore, **16** was oxidized with Dess–Martin periodinane¹⁹ to afford **38** in 98% yield. Reaction of β-keto sulfone **34** with NaH followed by addition of acetyl chloride gave the (Z)-enol acetate **39**. The selective formation of the (Z)-isomer is presumably due to an internally chelated enolate.²⁰ On the other hand, β-keto sulfones **34**, **35**, **37** and **38** were converted into mixtures of (Z)- and (E)-enol phosphates **40** (5.3 : 1, 95%), **41** (2.3 : 1, 91%), **42** (1.4 : 1, 92%), and **43** (2.5 : 1, 60%) by treatments with diphenyl phosphorochloridate in the presence of NaH and HMPA.^{4c}

Results of acetylene synthesis using SmI₂-HMPA are summarized in Table 2. Treatment of enol acetate 39 with SmI₂-HMPA provided a 5:1 inseparable mixture of 46 and (Z)-olefin 24 in 81% yield (entry 1).

Although Bartlett and co-workers recorded a considerable formation of β -keto sulfones by reduction of phenylsulfonyl enol acetates or enol carbonates with Na in liquid NH₃ or Na(Hg),^{4c} no reverting back to β -keto sulfone was observed by using SmI₂-HMPA. The desired compound 46 was obtained in 94% yield by treatment of enol phosphate 40 under the same reduction conditions (entry 2). Three disubstituted acetylenes 47–49 were produced in high yields by reactions of corresponding enol phosphates 41–43 (entries 3–5).

In order to compare with classical methods, known enol phosphates 44^{4b} and 45^{4c} were treated with the present procedure. On reaction of 44, acetylene 50 was obtained in 75% yield (entry 6), although Lythgoe and Waterhouse reported the formation of 50 in 64.5% yield together with a considerable amount of the β -keto sulfone using Na(Hg) as a reductant in THF-DMSO. The β -keto sulfone was not detected in entry 6. Bartlett and co-workers synthesized the monosubstituted acetylene 51 in 51% yield (60% yield of 85% pure material) by reaction of 45 with Na in liquid NH₃. On the other hand, acetylene 51 was obtained in 57% yield (65% of 87% pure material) by the reductive elimination of 45 using SmI₂-HMPA (entry 7).

entry	substrates	acetylenes	yield (%)
1	39	46	68b,d
2	40	46	94 ^b
3	41	47	87 ^b
4	42	48	82 ^b
5	43	49	92 ^b
6	44	50	75 ^c
7	45	51	57ce

Table 2. Synthesis of Acetylenes ^a

a Reactions were carried out for 30 min at ambient temperature.

b Products were purified by column chromatography on silica gel.

^c Products were purified by distillation.

d (Z)-24 was also obtained in 14% yield.

c 65% yield of 87% pure materials.

It has been made clear that the present procedure using SmI₂–HMPA provides effective methods for the preparation of various types of olefins and acetylenes. The present method possesses several advantages comparing with the classical methods due to the requirement of mild reaction conditions; for example i) no retro aldol type reaction during olefin synthesis and ii) no formation of β -keto sulfones during acetylene synthesis.

Experimental Section

General.

All reactions were carried out under N₂ or Ar atmosphere. Solvents were distilled prior to use: THF was distilled from Na-benzophenone; CH₂Cl₂, DMF and HMPA were distilled from CaH₂ and stored over 4 Å molecular sieves; MeOH was distilled from Mg-l₂ and stored over 3 Å molecular sieves; pyridine and Et₃N were distilled from KOH and stored over KOH. Unless otherwise noted, all extracts were dried over MgSO₄, and the solvents were removed by rotary evaporation under reduced pressure. NMR spectra were taken in CDCl₃. Column chromatography was performed on Merck Kieselgel 60 Art. 7734.

3-tert-Butyldiphenylsiloxy-1-chloropropane (2).

To a stirred solution of 1 (3.0 g, 31.7 mmol) and imidazole (2.8 g, 41.1 mmol) in DMF (45 mL) at rt was added TBDPSCl (8.3 mL, 31.9 mmol), and the mixture was stirred for 19 h at rt. The resulting mixture was partitioned between H₂O and Et₂O. The organic layer was washed with brine, dried, and evaporated to give a residue, which was purified by column chromatography. Elution with Et₂O-hexane (1 : 100 v/v) afforded 2 (8.6 g, 81%) as a colorless oil: IR (neat, cm⁻¹) 1470. 1430; ¹H NMR (300 MHz) δ 1.05 (s, 9H), 1.95–2.03 (m, 2H), 3.72 (t, J = 6.2 Hz, 2H), 3.79 (t, J = 5.8 Hz, 2H), 7.35–7.46 (m, 6H), 7.64–7.68 (m, 4H); MS m/z 297 (M+ –Cl), 275 (M+ –¹Bu). Anal. Calcd for C₁₉H₂₅ClOSi: C, 68.65; H, 7.59; Cl, 10.53. Found: C, 68.56; H, 7.62; Cl, 10.31.

(3-tert-Butyldiphenylsiloxy)propyl Phenyl Sulfide (3).

To a stirred suspension of NaH (60 w/w% in mineral oil, 387 mg, 9.68 mmol) in DMF (30 mL) at 0 °C was slowly added PhSH (1.13 mL, 11.0 mmol), and the mixture was stirred for 20 min at 0 °C. To the resulting mixture was added a solution of **2** (2.14 g, 6.44 mmol) in DMF (10 mL) at the same temperature. After 6 h of stirring at rt, the mixture was diluted with Et₂O and then washed with H₂O, 10% aqueous NaOH, and brine, dried, and evaporated. Column chromatography of the residue with Et₂O-hexane (1 : 50 v/v) as eluent gave **3** (2.64 g, 100%) as a colorless oil: IR (neat, cm⁻¹) 1590, 1480, 1470, 1430; ¹H NMR (300 MHz) δ 1.05 (s, 9H), 1.82–1.91 (m, 2H), 3.06 (t, J = 7.3 Hz, 2H), 3.76 (t, J = 5.9 Hz, 2H), 7.15–7.43 (m, 11H), 7.63–7.67 (m, 4H); MS m/z 349 (M⁺ –^tBu). Anal. Calcd for C₂₅H₃₀OSSi: C, 73.84; H, 7.44. Found: C, 74.06; H, 7.40.

(3-tert-Butyldiphenylsiloxy)propyl Phenyl Sulfone (4).

To a stirred mixture of 3 (8.3 g, 20.4 mmol) and Na₂HPO₄ (14.5 g, 102 mmol) in CH₂Cl₂ (160 mL) at 0 $^{\circ}$ C was slowly added *m*-CPBA (8.8 g, 51.0 mmol). After being stirred for 50 min at rt, followed by dilution

with Et₂O and addition of 0.1 N aqueous Na₂S₂O₃, the mixture was stirred for 10 min at rt. The organic layer was washed with 10% aqueous NaOH and brine, dried, and evaporated to give a residue, which was subjected to column chromatography. Elution with AcOEt-hexane (1:7 v/v) gave 4 (8.64 g, 96%) as a colorless oil: IR (neat, cm⁻¹) 1590, 1475, 1450, 1430, 1320, 1150; 1 H NMR (300 MHz) δ 1.00 (s, 9H), 1.85–1.95 (m, 2H), 3.22–3.27 (m, 2H), 3.66 (1, J = 5.7 Hz, 2H), 7.32–7.44 (m, 6H), 7.54–7.59 (m, 6H), 7.63–7.66 (m, 1H), 7.87–7.91 (m, 2H); MS m/z 381 (M+ - 1 Bu). Anal. Calcd for C₂₅H₃₀O₃SSi: C, 68.47; H, 6.90; S, 7.30: Found: C, 68.35; H, 6.90; S, 7.57.

5-tert-Butyldimethylsiloxymethyl-1-phenylthiomethyl-2,6,6-trimethyl-1-cyclohexene (14).

A mixture of 13^9 (18.0 g, 0.06 mol), diphenyl disulfide (39.5 g, 0.18 mol), and ⁿBu₃P (45 mL, 0.18 mol) in pyridine (49 mL) was stirred for 9 h at rt. After dilution with Et₂O, the mixture was washed with 10% aqueous NaOH and brine, dried, and evaporated to give a residue, which was purified by column chromatography. Elution with AcOEt-hexane (1 : 50 v/v) gave 14 (22.4 g, 95%) as a colorless oil: IR (neat, cm⁻¹) 1580, 1465, 1250; ¹H NMR (300 MHz) δ 0.05 (s, 6H), 0.90 (s, 9H), 0.94 (s, 3H), 1.19 (s, 3H), 1.36–1.52 (m, 2H), 1.77 (s, 3H), 1.78–1.87 (m, 1H), 1.97–2.05 (m, 2H), 3.38 (dd, J = 8.4, 9.5 Hz, 1H), 3.55–3.64 (m, 2H), 3.78 (dd, J = 3.7, 9.5 Hz, 1H), 7.11–7.18 (m, 1H), 7.23–7.34 (m, 4H); MS m/z 390 (M⁺). Anal. Calcd for C₂₃H₃₈OSSi: C, 70.71; H, 9.81; S, 8.19. Found: C, 70.77; H, 9.84; S, 7.97.

5-tert-Butyldimethylsiloxymethyl-1-phenylsulfonylmethyl-2,6,6-trimethyl-1-cyclohexene (15).

To a stirred solution of 14 (900 mg, 2.31 mmol) in THF-MeOH-H₂O (3:1:1, 22.5 mL) at 0 °C was slowly added OXONE®11 (4.0 g, 6.5 mmol), and the mixture was stirred for 4 h at rt. After being poured into H₂O, the mixture was extracted with AcOEt. The extract was washed with brine, dried, and evaporated to give the sulfone alcohol, which was used in the following reaction without purification.

To a stirred solution of the above product, TBDMSCl (491 mg, 3.26 mmol), DMAP (27 mg, 0.22 mmol) in CH₂Cl₂ (20 mL) at 0 °C was added Et₃N (0.91 mL, 6.53 mmol). After being stirred for 12 h at rt, the mixture was partitioned between H₂O and Et₂O. The organic layer was washed with brine, dried, and evaporated to give a residue, which was subjected to column chromatography. Elution with AcOEt-hexane (1 : 20 v/v) afforded **15** (880 mg, 96% for 2 steps) as a colorless solid, mp 77–78 °C: IR (CHCl₃, cm⁻¹) 1305, 1155; ¹H NMR (300 MHz) δ 0.05 (s, 6H), 0.89 (s, 9H), 0.93 (s, 3H), 1.12 (s, 3H), 1.68 (s, 3H), 1.79–1.88 (m, 1H), 2.04–2.12 (m, 2H), 3.38 (dd, J = 8.8, 9.5 Hz, 1H), 3.76 (dd, J = 3.7, 9.5 Hz, 1H), 3.91–4.02 (m, 2H), 7.50–7.65 (m, 3H), 7.88–7.95 (m, 2H); ¹³C NMR (75 MHz) δ 141.8, 139.5, 133.2, 129.1, 127.8, 126.0, 63.5, 57.8, 47.0, 36.7, 31.7, 28.3, 26.0, 23.3, 22.0, 20.9, 18.3, –5.3; MS m/z 281 (M+ –SO₂Ph). Anal. Calcd for C₂₃H₃₈O₃SSi: C, 65.37; H, 9.07; S, 7.57. Found: C, 65.17; H, 8.81; S, 7.28.

4-tert-Butyldiphenylsiloxy-1-(3,4-methylenedioxyphenyl)-2-phenylsulfonyl-1-butanol (5).

To a stirred solution of 4 (1.51 g, 3.45 mmol) in THF (35 mL) at -78 °C was added 1.56 M ⁿBuLi in hexane (2.2 mL, 3.43 mmol), and the mixture was stirred for 20 min at the same temperature. To the resulting mixture was slowly added a solution of piperonal (19) (525 mg, 3.50 mmol) in THF (5 mL) at -78 °C, and the mixture was stirred for 20 min at the same temperature. After dilution with Et₂O, the mixture was quenched with saturated NH₄Cl. The organic layer was washed with brine, dried, and evaporated. Silica gel column

chromatography of the residue with AcOEt–hexane (1 : 3 v/v) as eluent gave a 1 : 1 diastereoisomeric mixture of **5** (1.82 g, 90%) as a colorless oil: IR (neat, cm⁻¹) 3510, 1305; 1 H NMR (300 MHz) δ 0.88 and 0.91 [each s, 9H (1 : 1)], 1.52–1.63 (m, 0.5H), 1.90–2.02 (m, 0.5H), 2.07–2.23 (m, 1H), 2.81–2.88 (m, 0.5H), 3.20–3.28 (m, 1H), 3.37–3.45 (m, 0.5H), 3.50 (d, J = 2.2 Hz, 0.5H), 3.66–3.70 (m, 0.5H), 3.75–3.81 (m, 0.5H), 4.53 (d, J = 2.6 Hz, 0.5H), 5.01 (dd, J = 2.6, 8.4 Hz, 0.5H), 5.41 (br s, 0.5H), 5.85–5.90 (m, 2H), 6.65–6.84 (m, 3H), 7.30–7.71 (m, 13H), 7.86–7.95 (m, 2H); MS m/z 588 (M+), 531 (M+ $^{-1}$ Bu); HRMS calcd for $C_{29}H_{27}O_6SSi$ (M+ $^{-1}$ Bu) 531.1298, found 531.1276.

6-tert-Butyldiphenylsiloxy-1-phenyl-4-phenysulfonyl-3-hexanol (6).

Coupling of 4 (338 mg, 0.771 mmol) with hydrocinnamaldehyde (20) (105 mg, 0.783 mmol) as above gave a 1:1 mixture of 6 (441 mg, 99%) as a colorless oil: IR (neat, cm⁻¹) 3550, 1305; ¹H NMR (300 MHz) δ 0.98 and 1.00 [each s, 9H (1:1)], 1.58–1.68 (m, 0.5H), 1.90–2.17 (m, 3.5H), 2.53–2.79 (m, 1.5H), 2.86–2.95 (m, 0.5H), 3.18 (d, J = 3.3 Hz, 0.5H), 3.33 (br t, J = 5.1 Hz, 0.5H), 3.44 (dt, J = 4.4, 4.4 Hz, 0.5), 3.53–3.77 (m, 2.5H), 3.94–4.01 (m, 0.5H), 4.11–4.17 (m, 0.5H), 7.00–7.80 (m, 20H); MS m/z 572 (M⁺), 515 (M⁺ –¹Bu); HRMS calcd for C₃₀H₃₁O₄SSi (M⁺ –¹Bu) 515.1713, found 515.1694.

3-tert-Butyldiphenylsiloxy-1-(1-hydroxycyclohexyl)-1-phenylsulfonylpropane (7).

Coupling of 4 (294 mg, 0.67 mmol) with cyclohexanone (21) (55 mg, 0.56 mmol) gave 7 (338 mg, 94%) as a colorless oil: IR (neat, cm⁻¹) 3520, 1295; ¹H NMR (300 MHz) δ 0.94 (s, 9H), 3.21–3.27 (m, 1H), 3.34–3.40 (m, 2H), 3.81 (br s, 1H), 7.32–7.58 (m, 13H), 7.79–7.83 (m, 1H); ¹³C NMR (75 MHz) δ 140.7, 135.4, 133.5, 133.0, 129.8, 129.2, 128.0, 127.7, 74.8, 69.8, 61.9, 36.3, 33.9, 29.2, 26.8, 25.4, 21.4, 19.1; MS m/z 479 (M+ -¹Bu); HRMS calcd for C₂₇H₃₁O₄SSi (M+ -¹Bu) 479.1713, found 479.1684.

5,5-Ethylenedioxy-1-(4-methoxyphenyl)-2-phenylsulfonyl-1-hexanol (11).

Coupling of 10⁸ (3.0 g, 11.1 mmol) with *p*-anisaldehyde (22) (1.15 g, 8.45 mmol) was carried out at between -40 - 0 °C to afford a 1 : 1 mixture of 11 (3.37 g, 98%) as a colorless oil: IR (neat, cm⁻¹) 3520; ¹H NMR (300 MHz) δ 0.95 and 1.02 [each s, 3H (1 : 1)], 1.15–1.24 (m, 1H), 1.30–1.48 (m, 1.5H), 1.91–2.09 (m, 1H), 4.36 (d, J = 2.2 Hz, 0.5H), 4.93–5.00 (m, 0.5H), 5.33 (br s, 0.5H), 6.77–6.88 (m, 2H), 7.14 (d, J = 8.8 Hz, 1H), 7.24 (d, J = 8.8 Hz, 1H), 7.52–7.75 (m, 3H), 7.86–8.02 (m, 2H); MS m/z 406 (M⁺); HRMS calcd for $C_{21}H_{26}O_6S$ (M⁺) 406.1450, found 406.1465.

5-tert-Butyldimethylsiloxymethyl-1-[2-hydroxy-2-(3,4-methylenedioxy-phenyl)-1-phenyl-sulfonylethyl]-2,6,6-trimethyl-1-cyclohexene (16).

To a stirred solution of LDA, prepared form ¹Pr₂NH (0.43 mL, 3.07 mmol) and 1.56 M ⁿBuLi in haxane (1.82 mL, 2.84 mmol) in THF (10 mL) at 0 °C, was added a solution of **15** (1.00 g, 2.37 mmol) in THF (5 mL), and the mixture was stirred for 30 min at the same temperature. After the reaction mixture was cooled to –78 °C, a solution of piperonal (19) (391 mg, 2.60 mmol) was slowly added to the above mixture. The reaction mixture was stirred for 1 h at the same temperature, and poured into a stirred mixture of saturated NH₄Cl and Et₂O. The aqueous layer was extracted with Et₂O, and the extract was washed with brine, dried, and evaporated. Column chromatography of the residue with AcOEt–haxane (1 : 3 v/v) as eluent gave a 1.5 : 1 mixture of **16** (1.25 g, 92%) as a pale yellowish solid, which was recrystallized from AcOEt-hexane to provide

a colorless solid as a 4.5:1 diastereomeric mixture: IR (CHCl₃, cm⁻¹) 3350: ¹H NMR (500 MHz) δ -0.21 (s, 0.55H), -0.03-0.02 (m, 8.45H), 0.68 and 0.82 [each s, 3H (4.5:1)], 0.84 and 0.87 [each s, 9H (1:4.5)], 2.14 and 2.15 [each s, 3H (4.5:1)], 3.07 (dd, J = 9.8, 9.8 Hz, 0.18H), 3.37 (dd, J = 9.8, 9.8 Hz, 0.82H), 3.43 (dd, J = 4.8, 9.8 Hz, 0.18H), 3.61 (dd, J = 4.9, 9.8 Hz, 0.82H), 3.87 (d, J = 3.7 Hz, 0.82H), 4.01 (d, J = 9.8 Hz, 0.18H), 4.06 (d, J = 9.8 Hz, 0.82H), 4.09 (d, J = 3.1 Hz, 0.18H), 5.62–5.67 (m, 1H), 5.89–5.91 (m, 2H), 6.67 and 6.68 [each br s, 2H (1:4.5)], 6.76 and 6.77 [each br s, 1H (4.5:1)], 7.54–7.64 (m, 3H), 8.04–8.10 (m, 2H); Anal. Calcd for C₃₁H₄₄O₆SSi: C, 65.01; H, 7.75; S, 5.59. Found: C, 65.08; H, 7.85; S, 5.69.

5-tert-Butyldimethylsiloxymethyl-1-[2-(1-methyl-2,5-cyclohexadien-1-yl)-2-hydroxy-1-phenylsulfonylethyl]-2,6,6-trimethyl-1-cyclohexene (17).

Coupling of **15** (5.00 g, 11.8 mmol) with **23**¹² (1.88 g, 15.4 mmol) using LDA as above gave a 2.2: 1 mixture of **17** (5.13 g, 80%) as a pale yellowish solid: IR (CHCl₃, cm⁻¹) 3400; ¹H NMR (500 MHz) δ 0.03 (s, 1.88H), 0.05 (s, 2.06H), 0.06 (s, 2.06H), 0.88 and 0.90 [each s, 9H (1:2.2)], 0.98 (s, 0.94H), 1.02 (s, 2.06H), 1.11 (s, 2.06H), 1.14 (s, 0.94H), 1.16 (s, 2.06H), 1.18 (s, 0.94H), 1.43 and 1.62 [each s, 3H (1:2.2)], 2,60–2.67 (m, 2H), 3.24 (dd, J = 9.2, 9.7 Hz, 0.31H), 3.44 (dd, J = 9.8, 9.8 Hz, 0.69H), 3.67 (dd, J = 3.7, 9.7 Hz, 0.31H), 3.72 (dd, J = 4.3, 9.8 Hz, 0.69H), 3.96 and 4.05 [each d, each J = 4.9 Hz, 1H (1:2.2)], 4.38–4.43 (m, 1H), 5.39–5.79 (m, 4H), 7.47–7.51 (m, 2H), 7.57–7.61 (m, 1H), 7.90–7.92 (m, 2H); MS m/z 487 (M⁺ – ¹Bu). Anal. Calcd for C₃₁H₄₈O₄SSi: C, 68.34; H, 8.89; S, 5.87. Found: C, 68.41; H, 8.94; S, 5.77.

4-tert-Butyldiphenylsiloxy-1-cyclohexyl-2-phenylsulfonyl-1-butanol (36).

Coupling of 4 (1.01 g, 2.31 mmol) with cyclohexanecarboxaldehyde (200 mg, 1.78 mmol) as described in the preparation of 5 gave a 1 : 1 mixture of 36 (941 mg, 96%) as a colorless oil: IR (neat, cm⁻¹) 3530, 1310; ¹H NMR (300 MHz) δ 0.98 and 1.03 [each s, 9H (1 : 1)], 3.00 (d, J = 2.6 Hz, 0.5H), 3.30 (d, J = 7.7 Hz, 0.5H), 3.61~3.81 (m, 4H), 7.32~7.64 (m, 13H), 7.81~7.88 (m, 2H); MS m/z 493 (M⁺ -^tBu). Anal. Calcd for C₃₂H₄₂O₄SSi: C, 69.78; H, 7.69. Found: C, 69.48; H, 7.70.

4-tert-Butyldiphenylsiloxy-1-(3,4-methylenedioxyphenyl)-2-phenylsulfonyl-but-1-yl Acetate (8).

A mixture of 5 (110 mg, 0.187 mmol) and Ac₂O (0.35 mL, 3.7 mmol) in pyridine (2 mL) was stirred for 13 h at rt. After dilution with benzene, the mixture was washed with 10% aqueous KHSO₄ and brine, dried, and evaporated to give a residue, which was subjected to column chromatography. Elution with AcOEthexane (1 : 3 v/v) afforded a 1 : 1 mixture of 8 (115 mg, 98%) as a colorless oil: IR (neat, cm⁻¹) 1750, 1310; ¹H NMR (300 MHz) δ 0.89 and 1.00 [each s, 9H (1 : 1)], 1.68 and 1.96 [each s, 3H (1 : 1)], 2.11–2.30 (m, 2H), 3.31 (dt, J = 5.5, 11.6 Hz, 0.5H), 3.51 (dt, J = 5.1, 10.3 Hz, 0.5H), 3.64 (dt, J = 6.2, 11.6 Hz, 0.5H), 3.71–3.79 (m, 1H), 4.06 (dt, J = 6.0, 8.8 Hz, 0.5H), 5.86–5.92 (m, 2H), 6.03 (d, J = 8.8 Hz, 0.5H), 6.40 (br s, 0.5H), 6.56–6.78 (m, 3H), 7.30–7.68 (m, 13H), 7.85–7.91 (m, 2H); MS m/z 630 (M⁺), 573 (M⁺–^tBu); HRMS calcd for C₃₁H₂₉O₇SSi (M⁺–^tBu) 573.1415, found 573.1403.

6-tert-Butyldiphenylsiloxy-1-phenyl-4-phenysulfonylhex-3-yl Acetate (9).

By means of the above procedure, 6 (70 mg, 0.12 mmol) was converted into a 1 : 1 mixture of **9** (70 mg, 93%) as a colorless oil: IR (neat, cm⁻¹) 1745, 1310; ¹H NMR (300 MHz) δ 0.98 and 1.01 [each s, 9H (1 : 1)], 1.83 and 1.84 [each s, 3H (1 : 1)], 5.05–5.11 (m, 0.5H), 5.41–5.46 (m, 0.5H), 6.99–7.83 (m, 20H); MS m/z 614 (M⁺). Anal. Calcd for C₃₆H₄₂O₅SSi; C, 70.32; H, 6.88. Found: C, 70.28; H, 6.93.

5,5-Ethylenedioxy-1-(4-methoxyphenyl)-2-phenylsulfonylhex-1-yl Acetate (12).

By means of the above procedure, 11 (1.6 g, 4.0 mmol) was converted into a 1 : 1 mixture of 12 (1.75 g, 99%) as a colorless oil: IR (neat, cm⁻¹) 1745–1735; ¹H NMR (300 MHz) δ 1.07 and 1.15 [each s, 3H (1 : 1)], 1.65 and 1.94 [each s, 3H (1 : 1)], 6.05 (d, J = 8.8 Hz, 0.5H), 6.36 (d, J = 2.2 Hz, 0.5H), 6.80 and 6.85 [each d, each J = 8.8 Hz, 2H (1 : 1)], 7.04 and 7.25 [each d, each J = 8.8 Hz, 2H (1 : 1)], 7.49–7.72 (m, 3H), 7.82–8.00 (m, 2H); MS m/z 448 (M⁺); HRMS calcd for $C_{23}H_{28}O_7S$ (M⁺) 448.1556, found 448.1528.

1-[2-Acetoxy-2-(3,4-methylenedioxyphenyl)-1-phenylsufonylethyl]-5-tert-butyldimethyl-siloxymethyl-2,6,6-trimethyl-1-cyclohexene (18).

By means of the above procedure, **16** (200 mg, 0.35 mmol) was converted into a 4.5 : 1 mixture of **18** (215 mg, 100%) as a colorless solid: IR (CHCl₃, cm⁻¹) 1745, 1300; ¹H NMR (300 MHz) δ –0.02–0.14 (m, 9H), 0.85 and 0.87 [each s, 9H (1 : 4.5)], 0.99 and 1.09 [each s, 3H (4.5 : 1)], 1.93 and 2.02 [each s, 3H (4.5 : 1)], 2.22 (br s, 3H), 3.03 (dd, J = 9.2, 9.2 Hz, 0.18H), 3.41 (dd, J = 9.5, 9.5 Hz, 0.82H), 3.45 (dd, J = 4.7, 9.2 Hz, 0.18H), 3.65 (dd, J = 4.8, 9.5 Hz, 0.82H), 4.25 (d, J = 10.6 Hz, 0.18H), 4.31 (d, J = 11.0 Hz, 0.82H), 5.89–5.91 (m, 2H), 6.54–6.68 (m, 4H), 7.54–7.68 (m, 3H), 7.95–8.00 (m, 2H); MS m/z 497 (M+ $_{\rm -}$ tBu). Anal. Calcd for C₃₃H₄₆O₇SSi: C, 64.46; H, 7.54. Found: C, 64.18; H, 7.66.

(E)- and (Z)-4-tert-Butyldiphenylsiloxy-1-(3,4-methylenedioxyphenyl)-1-butene (24) and 4-tert-Butyldiphenylsiloxy-1-(3,4-methylenedioxyphenyl)-1-butanol (30). Reduction of 5.

(A) To a stirred solution of 0.1 M SmI₂¹³ in THF (4.3 mL, 0.43 mmol) at rt was added HMPA (0.22 mL), and the color of the SmI₂ solution changed to purple. To the resulting mixture was quickly added a solution of **5** (49 mg, 0.083 mmol) in THF (0.5 mL), and the mixture was stirred for 2 h at the same temperature. After dilution with Et₂O, the mixture was washed with 10% aqueous HCl, H₂O, saturated NaHCO₃ and brine, dried, and evaporated to give a residue, which was subjected to column chromatography. Elution with Et₂O-hexane (1 : 30 v/v) afforded the 3 : 1 mixture of (*E*)- and (*Z*)-**24** (26 mg, 73%) as a colorless oil: IR (neat, cm⁻¹) 1610, 1605, 1590; ¹H NMR (300 MHz) δ 1.04 and 1.05 [each s, 9H (1 : 3)], 2.40–2.47 and 2.53–2.60 [each m, 2H (3 : 1)], 3.70–3.83 (m, 2H), 5.62 (dt, *J* = 7.0, 11.7 Hz, 0.25H), 5.93 and 5.95 [each s, 2H (3 : 1)], 6.02 (dt, *J* = 7.0, 15.7 Hz, 0.75H), 6.32 (br d, *J* = 15.7 Hz, 0.75H), 6.39 (br d, *J* = 11.7 Hz, 0.25H), 6.73 and 6.75 [each br s, 2H (3 : 1)], 6.82 and 6.86 [each br s, 1H (1 : 3)], 7.26–7.57 (m, 6H), 7.65–7.69 (m, 4H); MS *m/z* 430 (M+). Anal. Calcd for C₂₇H₃₀O₃Si: C, 75.31; H, 7.02. Found: C, 75.31; H, 7.03.

(B) A mixture of 5 (48 mg, 0.082 mmol), 5% Na(Hg) (188 mg, 0.409 mmol), and Na₂HPO₄ (81 mg, 0.57 mmol) in THF-MeOH (1:1, 2 mL) was stirred for 2 h at rt. After decantation into Et₂O, the organic solution was washed with H₂O and brine, dried, and evaporated. Purification as described above gave a 2.1:1 mixture of (E)- and (Z)-24 (24 mg, 68%). Further clutton with AcOEt-hexane (1:5 v/v) afforded 30 (7 mg,

20%) as a colorless oil: IR (neat, cm⁻¹) 3410; ¹H NMR (300 MHz) δ 1.05 (s, 9H), 2.45 (br s, 1H), 3.68 (t, J = 5.9 Hz, 2H), 4.61 (br t, J = 6.6 Hz, 1H), 5.94 (s, 2H), 6.77 (br s, 2H), 6.86 (br s, 1H), 7.32–7.45 (m, 6H), 7.63–7.68 (m, 4H); MS m/z 448 (M⁺); HRMS calcd for C₂₇H₃₂O₄Si (M⁺) 448.2070, found 448.2093.

Reduction of 8.

- (A) Reduction of 8 (60 mg, 0.095 mmol) with 0.1 M SmI₂ in THF (5.0 mL, 0.50 mmol) and HMPA (0.25 mL) as above afforded a 3.1 : 1 mixture of (E)- and (Z)-24 (39 mg, 95%).
- (B) Reduction of 8 (55 mg, 0.087 mmol) with 5% Na(Hg) (200 mg, 0.44 mmol) in the presence of Na₂HPO₄ (87 mg, 0.61 mmol) as above afforded a 3.7 : 1 mixture of (E)- and (Z)-24 (33 mg, 88%).

(E)- and (Z)-5,5-Ethylenedioxy-1-(4-methoxyphenyl)-1-hexene (25) and 5,5-Ethylenedioxy-1-(4-methoxyphenyl)-1-hexanol (31).

Reduction of 11.

11 (125 mg, 0.31 mmol) was treated with 0.1 M SmI₂ in THF (15.4 mL, 0.15 mmol) and HMPA (7.7 mL) as above. Silica gel column chromatography with Et₂O-hexane (1 : 10 v/v) as eluent gave a 7 : 1 mixture of (*E*)- and (*Z*)-25 (45 mg, 59%) as a colorless oil: IR (neat, cm⁻¹) 1607, 1510; ¹H NMR (300 MHz) δ 1.33 and 1.35 [each s, 3H (1 : 3)], 1.74–1.85 (m, 2H), 2.22–2.75 (m, 1.5H), 2.38–2.48 (m, 0.5H), 3.79 and 3.80 [each s, 3H (3 : 1)], 3.82–4.00 (m, 4H), 5.56 (dt, J = 7.3, 11.7 Hz, 0.5H), 6.08 (dt, J = 7.0, 15.7 Hz, 0.5H), 6.28–6.39 (m, 1H), 6.78–6.89 (m, 2H), 7.18–7.30 (m, 2H); MS m/z 248 (M⁺); HRMS calcd for C₁₅H₂₀O₃ (M⁺) 248.1412, found 248.1422.

Further elution with AcOEt-hexane (1 : 1 v/v) afforded **31** (29 mg, 35%) as a colorless oil: IR (neat, cm⁻¹) 3442, 1610, 1512; ¹H NMR (300 MHz) δ 1.29 (s, 3H), 3.80 (s, 3H), 3.82–3.98 (m, 4H), 4.55–4.67 (m, 1H), 6.87 (d, J = 8.8 Hz, 2H), 7.26 (d, J = 8.8 Hz, 2H); MS m/z 266 (M+); HRMS calcd for C₁₅H₂₂O₄ (M+) 266.1518, found 266.1566.

Reduction of 12.

Reduction of 12 (100 mg, 0.223 mmol) with 0.1 M SmI₂ in THF (11 mL, 1.1 mmol) and HMPA (5.5 mL) afforded a 3:1 mixture of (E)- and (Z)-25 (51 mg, 92%).

1-tert-Butyldiphenylsiloxy-6-phenyl-3-hexene (26).

Reduction of 6.

Reduction of 6 (93 mg, 0.163 mmol) with 0.1 M SmI₂ in THF (8.1 mL, 0.81 mmol) and HMPA (0.41 mL) as above afforded a 2.9 : 1 mixture of (*E*)- and (*Z*)-26 (20 mg, 30%) as a colorless oil: IR (neat, cm⁻¹) 1590, 1430; ¹H NMR (300 MHz) δ 1.04 and 1.05 [each s, 9H (1 : 2.9)], 2.21–2.34 (m, 4H), 2.58–2.67 (m, 2H), 3.59 and 3.66 [each t, each J = 7.0 Hz, 2H (1 : 2.9)], 5.36–5.55 (m, 2H), 7.13–7.68 (m, 15H); ¹³C NMR (75 MHz) δ 142.2 (*E*), 142.0 (*Z*), 135.6, 134.1 (*E*), 134.0 (*Z*), 131.7 (*E*), 130.7 (*Z*), 129.6, 128.5, 128.3, 127.6, 127.3, 126.5 (*Z*), 125.7 (*E*), 64.1 (*E*), 63.7 (*Z*), 36.1 (*E*), 36.0, 34.7 (*E*), 31.0 (*Z*), 29.3 (*Z*), 27.0, 19.4; MS m/z 357 (M+ –¹Bu). Anal. Calcd for C₂₈H₃₄OSi: C, 81.10; H, 8.26. Found: C, 80.77; H, 8.42.

Reduction of 9.

Reduction of 9 (46 mg, 0.075 mmol) with 0.1 M Sml₂ in THF (3.8 mL, 0.38 mmol) and HMPA (0.19 mL) as above afforded a 1.1:1 mixture of (E)- and (Z)-26 (25 mg, 81%).

3-tert-Butyldiphenysiloxy-1-cyclohexylidenepropane (27) and 1-(3-tert-Butyldiphenylsiloxyprop-1-yl)-1-cyclohexanol (33).

7 (93 mg, 0.17 mmol) was reduced with 0.1 M SmI₂ in THF (8.7 mL, 0.87 mmol) and HMPA (0.44 mL) as above. Silica gel column chromatography with Et₂O-hexane (1 : 50 v/v) as eluent afforded **27** (35 mg, 53%) as a colorless oil: IR (neat, cm⁻¹) 1590, 1475, 1430; ¹H NMR (300 MHz) δ 1.05 (s, 9H), 1.40–1.55 (m, 6H), 2.00–2.05 (m, 4H), 2.25 (dt, J = 7.3, 7.3 Hz, 2H), 3.61 (t, J = 7.3 Hz, 2H), 5.03 (br t, J = 7.3 Hz, 1H), 7.25–7.44 (m, 6H), 7.66–7.69 (m, 4H); MS m/z 321 (M⁺ –¹Bu); HRMS calcd for C₂₁H₂₅OSi (M⁺ –¹Bu) 321.1674, found 321.1700.

Further elution with Et₂O-hexane (1 : 3 v/v) afforded **33** (21 mg, 31%) as a colorless oil: IR (neat, cm⁻¹) 3430; ¹H NMR (300 MHz) δ 1.00 (s, 9H), 3.68 (t, J = 7.2 Hz, 2H), 7.25–7.42 (m, 6H), 7.65–7.69 (m, 4H); MS m/z 339 (M⁺ –¹Bu); HRMS calcd for C₂₁H₂₇O₂Si (M⁺ –¹Bu) 339.1780, found 339.1779.

(E) - 5 - tert - Butyl dimethyls iloxymethyl - 1 - [2 - (3,4 - methylenedioxyphenyl) ethen - 1 - yl] - 2,6,6 - trimethyl - 1 - cyclohexene (28).

Reduction of 16.

- (A) **16** (50 mg, 0.087 mmol) was reduced with 0.1 M SmI₂ in THF (4.37 mL, 0.437 mmol) and HMPA (0.22 mL) as above. Silica gel column chromatography with Et₂O-hexane (1 : 50 v/v) as eluent afforded **28** (27 mg, 75%) as a solid, which was recrystallized from Et₂O-MeOH to provide colorless prisms, mp 70–71 °C: IR (CHCI₃, cm⁻¹) 1605, 1490; ¹H NMR (300 MHz) δ 0.06 (s, 6H), 0.89 (s, 3H), 0.90 (s, 9H), 1.12 (s, 3H), 1.39–1.54 (m, 2H), 1.73 (s, 3H), 1.81–1.91 (m, 1H), 2.01–2.07 (m, 2H), 3.39 (dd, J = 8.8, 9.5 Hz, 1H), 3.80 (dd, J = 3.7, 9.5 Hz, 1H), 5.95 (s, 2H), 6.20 (d, J = 16.1 Hz, 1H), 6.47 (br d, J = 16.1 Hz, 1H), 6.76 (d, J = 8.1 Hz, 1H), 6.81 (dd, J = 1.5, 8.1 Hz, 1H), 6.97 (d, J = 1.5 Hz, 1H); MS m/z 414 (M⁺); HRMS calcd for C₂₅H₃₈O₃Si (M⁺) 414.2590, found 414.2582.
- (B) Reduction of **16** (50 mg, 0.087 mmol) with 5% Na(Hg) (200 mg, 0.437 mmol) in the presence of Na₂HPO₄ (87 mg, 0.61 mmol) as described in the preparation of **24** gave a residue, which was subjected to silica gel column chromatography with Et₂O-hexane (1 : 100 v/v) as eluent to afford 4-*tert*-butyldimethylsiloxymethyl-1,2,3,3-tetramethyl-1-cyclohexene (5 mg, 20%) as a colorless oil: IR (neat, cm⁻¹) 1535, 1435; ¹H NMR (300 MHz) δ 0.05 (s, 6H), 0.83 (s, 3H), 0.90 (s, 9H), 1.05 (s, 3H), 1.55 (br s, 3H), 1.58 (br s, 3H), 1.75–1.85 (m, 1H), 1.89–1.98 (m, 2H), 3.36 (dd, J = 9.8, 9.9 Hz, 1H), 3.78 (dd, J = 4.0, 9.9 Hz, 1H); MS m/z 282 (M+); HRMS calcd for C₁₇H₃₄OSi (M+) 282.2379, found 282.2401.

Further elution with Et₂O-hexane (1:100 v/v) provided **28** (14 mg, 39%) and elution with AcOEt-hexane (1:10 v/v) gave **15** (14 mg, 38%).

Reduction of 18.

- (A) Reduction of **18** (50 mg, 0.081 mmol) with 0.1 M Sml₂ in THF (4.1 mL, 0.41 mmol) and HMPA (0.21 mL) afforded **28** (28 mg, 83%).
- (B) Reduction of 16 (50 mg, 0.081 mmol) with 5% Na(Hg) (187 mg, 0.407 mmol) in the presence of Na₂HPO₄ (81 mg, 0.57 mmol) afforded 28 (26 mg, 77%).

(E)-5-tert-Butyldimethylsiloxymethyl-1-[2-(1-methyl-2,5-cyclohexadien-1-yl)-ethen-1-yl]-2,6,6-trimethyl-1-cyclohexene (29).

(A) **17** (100 mg, 0.184 mmol) was reduced with 0.1 M SmI₂ in THF (6.43 mL, 0.643 mmol) and HMPA (0.23 mL) as above. Silica gel column chromatography with Et₂O-hexane (1 : 500 v/v) as eluent afforded **29** (58 mg, 82%) as a colorless oil: IR (neat, cm⁻¹) 1470, 1460, 1360; ¹H NMR (300 MHz) δ 0.04 (s, 6H), 0.80 (s, 3H), 0.89 (s, 9H), 1.02 (s, 3H), 1.17 (s, 3H), 1.35–1.50 (m, 2H), 1.63 (s, 3H), 1.78–1.85 (m, 1H), 1.94–1.99 (m, 2H), 2.59–2.64 (m, 2H), 3.36 (dd, J = 9.2, 9.9 Hz, 1H), 3.76 (dd, J = 4.0, 9.9 Hz, 1H), 5.30 (d, J = 16.1 Hz, 1H), 5.53 - 5.57 (m, 2H), 5.65–5.75 (m, 3H); ¹³C NMR (75 MHz) δ 142.4, 137.7, 133.2, 127.7, 125.0, 121.9, 64.0, 46.9, 38.9, 36.4, 31.4, 28.5, 27.9, 26.1, 22.6, 21.6, 18.4, -5.1; MS m/z 386 (M⁺). Anal. Calcd for C₂₅H₄₂OSi: C, 77.65; H, 10.95. Found: C, 77.52; H, 10.99.

(B) Reduction of 17 (100 mg, 0.184 mmol) with 5% Na(Hg) (422 mg, 0.918 mmol) in the presence of Na₂HPO₄ (183 mg, 1.29 mmol) as above afforded 29 (41 mg, 58%) and a considerable amount of crude 15.

4-tert-Butyldiphenylsiloxy-1-(3,4-methylenedioxyphenyl)-2-phenylsulfonyl-1-butanone (34).

A mixture of **5** (1.68 g, 2.86 mmol), PCC (1.23 g, 5.71 mmol), and 4 Å molecular sieves (1.5 g) in CH₂Cl₂ (35 mL) was stirred for 2 h at rt. After dilution with Et₂O, the reaction mixture was filtered through Florisil. Evaporation of the filtrate afforded a residue, which was recrystallized from AcOEt-hexane to provide **34** (1.56 g, 93%) as colorless prisms, mp 125–126 °C: IR (CHCl₃, cm⁻¹) 1675, 1320; ¹H NMR (300 MHz) δ 0.92 (s, 9H), 2.15–2.40 (m, 2H), 3.34–3.47 (m, 1H), 3.62–3.71 (m, 1H), 5.45 (dd, J = 3.3, 10.6 Hz, 1H) 6.06–6.07 (m, 2H), 6.83 (d, J = 8.1 Hz, 1H), 7.23–7.79 (m, 17H); ¹³C NMR (75 MHz) δ 189.9, 152.7, 148.4, 136.6, 135.4, 135.3, 134.1, 132.8, 132.1, 129.8, 129.7, 128.9, 127.7, 127.6, 126.4, 108.6, 108.0, 102.2, 66.8, 60.4, 31.4, 26.7, 19.1; MS m/z 529 (M+ - 1Bu). Anal. Calcd for C₃₃H₃₄O₆SSi: C, 67.55; H. 5.84; S, 5.46. Found: C, 67.53; H, 5.97; S, 5.43.

6-tert-Butyldiphenylsiloxy-1-phenyl-4-phenylsulfonyl-3-hexanone (35).

Oxidation of 6 (97 mg, 0.17 mmol) with PCC (73 mg, 0.34 mmol) as above gave the residue, which was subjected to silica gel column chromatography. Elution with AcOEt–hexane (1 : 8 v/v) afforded 35 (91 mg, 94%) as a colorless oil: IR (neat, cm⁻¹) 1720, 1310; ¹H NMR (300 MHz) δ 0.99 (s, 9H), 2.00–2.14 (m, 2H), 2.81–2.92 (m, 3H), 3.24–3.35 (m, 1H), 3.36 - 3.48 (m, 1H), 3.57–3.67 (m, 1H), 4.46 (dd, J = 4.4, 9.9 Hz, 1H), 7.14–7.68 (m, 20H); MS m/z 513 (M⁺ –^tBu); HRMS calcd for C₃₀H₂₉O₄SSi (M⁺ –^tBu) 513.1556, found 513.1527.

4-tert-Butyldiphenylsiloxy-1-cyclohexyl-2-phenylsulfonyl-1-butanone (37).

Oxidation of **36** (941 mg, 1.71 mmol) with PCC (740 mg, 3.43 mmol) as above afforded **37** (920 mg, 98%) as a colorless oil: IR (neat, cm⁻¹) 1710, 1320; ¹H NMR (300 MHz) δ 1.02 (s, 9H), 2.76–2.86 (m, 1H), 3.26–3.37 (m, 1H), 3.59–3.65 (m, 1H), 4.80 (dd, J = 3.7, 10.2 Hz, 1H), 7.34–7.78 (m, 15H); ¹³C NMR (75 MHz) δ 205.3, 136.6, 135.5, 135.4, 134.1, 133.0, 132.9, 129.88, 129.85, 129.5, 129.0, 127.79, 127.76, 69.5, 60.0, 52.8, 30.7, 28.4, 27.3, 26.9, 25.9, 25.8, 25.1, 19.1; MS m/z 491 (M+ $^{-1}$ Bu); HRMS calcd for C₂₈H₃₁O₄SSi (M+ $^{-1}$ Bu) 491.1713, found 491.1715.

(Z)-1-Acetoxy-4-tert-butyldiphenylsiloxy-1-(3,4-methylenedioxyphenyl)-2-phenylsulfonyl-1-butene (39).

To a stirred suspension of NaH (60 w/w% in mineral oil, 9 mg, 0.23 mmol) in THF (2 mL) at rt was slowly added a solution of 34 (96 mg, 0.16 mmol) in THF (1 mL), and the mixture was stirred for 1 h at rt. To the resulting mixture at 0 °C was added acetyl chloride (20 μ L, 0.28 mmol). After being stirred for 20 min at rt, the mixture was diluted with Et₂O and then washed with saturated NaHCO₃ and brine, dried, and evaporated. Silica gel column chromatography of the residue with AcOEt-hexane (1 : 3 v/v) as eluent gave 39 (94 mg, 91%) as a colorless oil: IR (neat, cm⁻¹) 1780, 1635, 1310; ¹H NMR (300 MHz) δ 1.01 (s, 9H), 2.07 (s, 3H), 2.87 (t, J = 6.5 Hz, 2H), 3.94 (t, J = 6.5 Hz, 2H), 5.96 (s, 2H), 6.67 (d, J = 8.1 Hz, 1H), 6.91 (d, J = 1.8 Hz, 1H), 6.97 (dd, J = 1.8, 8.1 Hz, 1H), 7.31–7.62 (m, 13H), 7.93 (dd, J = 1.5, 7.3 Hz, 2H); MS m/z 571 (M⁺ - ¹Bu); HRMS calcd for C₃₁H₂₇O₇SSi (M⁺ - ¹Bu) 571.1247, found 571.1258.

(E)- and (Z)-4-tert-Butyldiphenylsiloxy-1-(diphenoxyphosphinyl)oxy-1-(3,4-methylene-dioxyphenyl)-2-phenylsulfonyl-1-butene (40).

To a stirred suspension of NaH (60 w/w% in oil, 18 mg, 0.45 mmol) in THF-HMPA (3:1 v/v, 4.8 mL) at rt was slowly added a solution of 34 (200 mg, 0.341 mmol) in THF (1.2 mL), and the mixture was stirred for 1 h at rt. To the resulting mixture at 0 °C was added (PhO)₂P(O)Cl (105 μ L, 0.507 mmol), and the mixture was stirred for 20 min at rt. The mixture was quenched with saturated NH₄Cl under ice cooling, and the aqueous layer was extracted with AcOEt. The organic layer was washed with H₂O and brine, dried, and evaporated to give a residue, which was subjected to silica gel column chromatography. Elution with AcOEthexane (1:2 v/v) gave a 5.3:1 mixture of enol phosphates 40 (266 mg, 95%) as an oil: IR (neat, cm⁻¹) 1630, 1310, 970; ¹H NMR (300 MHz) δ 0.99 and 1.09 [each s, 9H (5.3:1)], 2.79 and 3.00 [each br t, each J = 7.0 Hz, 2H (5.3:1)], 3.90 and 3.95 [each t, each J = 7.0 Hz, 2H (5.3:1)], 5.89 and 5.91 [each s, 2H (1:5.3)], 6.46–8.04 (m, 28H); MS m/z 761 (M+ $-^t$ Bu); HRMS calcd for C41H34O9PSSi (M+ $-^t$ Bu) 761.1430, found 761.1398.

(E)- and (Z)-1-tert-Butyldiphenylsiloxy-4-(diphenoxyphosphinyl)oxy-6-phenyl-2-phenyl-sulfonyl-3-hexene (41).

By means of the above procedure, 35 (85 mg, 0.15 mmol) was converted into a 2.3 : 1 mixture of 41 (109 mg, 91%) as an oil: IR (neat, cm⁻¹) 1640, 1310, 980; ¹H NMR (300 MHz) δ 1.01 and 1.03 [each s, 9H (1 : 3)], 2.39 (t, J = 7.5 Hz, 1.39H), 2.68– 2.86 (m, 4H), 3.33 (t, J = 7.5 Hz, 0.61H), 3.65–3.73 (m, 2H), 6.76–7.87 (m, 30H); MS m/z 745 (M+ $^{-1}$ Bu); HRMS calcd for C₄₂H₃₈O₇PSSi (M+ $^{-1}$ Bu) 745.1845, found 745.1841.

(E)- and (Z)-4-tert-Butyldiphenylsioxy-1-cyclohexyl-1-(diphenoxyphos-phinyl)oxy-2-phenylsulfonyl-1-butene (42).

By means of the above procedure, 37 (560 mg, 1.02 mmol) was converted into a 1.4: 1 mixture of 42 (733 mg, 92%) as an oil: IR (neat, cm⁻¹) 1620, 1310, 965; ¹H NMR (300 MHz) δ 1.02 and 1.05 [each s, 9H (1.4:1)], 2.50– 2.61 (m, 0.42H), 2.81 (t, J = 7.3 Hz, 0.83H), 3.00 (t, J = 7.0 Hz, 1.17H), 3.83 (t, J = 7.3 Hz, 0.83H), 3.89 (t, J = 7.0 Hz, 1.17H), 7.13–7.99 (m, 25H); MS m/z 723 (M⁺ –¹Bu); HRMS calcd for C₄₀H₄₀O₇PSSi (M⁺ –¹Bu) 723.2001, found 723.1989.

(E)- and (Z)-5-tert-Butyldimethylsiloxymethyl-1-[2-(diphenoxyphosphinyl)-oxy-2-(3,4-methylenedioxyphenyl)-1-phenysulfonyl]ethenyl-2,6,6-trimethyl-1-cyclohexene (43).

To a stirred solution of Dess-Martin periodinane¹⁹ (300 mg, 0.707 mmol) and pyridine (0.15 mL, 1.9 mmol) in CH₂Cl₂ (4 mL) at rt was added a solution of **16** (200 mg, 0.35 mmol) in CH₂Cl₂ (2 mL). After being stirred for 30 min at the same temperature, the resulting mixture was diluted with Et₂O, and poured into a mixture of saturated NaHCO₃ and 5% aqueous Na₂S₂O₃, and the mixture was stirred for 1 h. The organic layer was washed with saturated NaHCO₃ and brine, dried, and evaporated to give a residue, which was subjected to silica gel column chromatography. Elution with AcOEt-hexane (1:3 v/v) afforded **38** (196 mg, 98%) as an oil: IR (neat, cm⁻¹) 1690, 1325.

The above keto sulfone (145 mg, 0.254 mmol) was treated with NaH (60 w/w% in oil, 15 mg, 0.38 mmol) and (PhO)₂P(O)Cl (85 μ L, 0.41 mmol) as described above. Column chromatography of the product on silica gel with AcOEt-hexane (1 : 4 v/v) as eluent gave a 2.5 : 1 mixture of 43 (123 mg, 60%) as an oil: IR (CHCl₃, cm⁻¹) 1590, 1310, 950; ¹H NMR (300 MHz) δ –0.04 (s, 0.86H), –0.03 (s, 0.86H), 0.00 (s, 4.28H), 0.38 and 0.48 [each s, 3H (1 : 2.5)], 0.84 and 0.86 [each s, 9H (1 : 2.5)], 1.02 and 1.21 [each d, 3H (2.5 : 1)], 2.04 and 2.06 [each s, 3H (2.5 : 1)], 2.96 (dd, J = 9.5, 9.9 Hz, 0.29H), 3.26 (dd, J = 4.4, 9.9 Hz, 0.29H), 3.38 (dd, J = 9.2, 9.9 Hz, 0.71H), 3.66 (dd, J = 9.4, 9.9 Hz, 0.71H), 5.92 and 5.94 [each s, 2H (2.5 : 1)], 6.64–7.61 (m, 16H), 8.21–8.25 (m, 2H); MS m/z 802 (M+), 745 (M+ –¹Bu); HRMS calcd for $C_{39}H_{42}O_{9}PSSi$ (M+ –¹Bu) 745.2056, found 745.2045.

4-tert-Butyldiphenylsiloxy-1-(3,4-methylenedioxyphenyl)-1-butyne (46).

To a stirred mixture of 0.1 M Sml₂ in THF (8.7 mL, 0.87 mmol) and HMPA (0.44 mL) was added a solution of **40** (142 mg, 0.17 mmol) in THF (1 mL), and the mixture was stirred for 30 min at the same temperature. After dilution with Et₂O, the mixture was washed with 10% aqueous HCl, saturated NaHCO₃ and brine, dried, and evaporated to give a residue, which was subjected to column chromatography on silica gel. Elution with Et₂O-hexane (1 : 75 v/v) afforded **46** (70 mg, 94%) as a colorless oil: IR (neat, cm⁻¹) 1605, 1590; ¹H NMR (300 MHz) δ 1.07 (s, 9H), 2.65 (t, J = 7.0 Hz, 2H), 3.84 (t, J = 7.0 Hz, 2H), 5.94 (s, 2H), 6.70 (d, J = 8.1 Hz, 1H), 6.81 (d, J = 1.5 Hz, 1H), 6.88 (dd, J = 1.5, 8.1 Hz, 1H), 7.33–7.45 (m, 6H), 7.70 (dd, J = 1.8, 7.7 Hz, 2H); ¹³C NMR (75 MHz) δ 147.4, 147.3, 135.8, 135.5, 133.7, 129.81, 129.76, 129.68, 127.8, 127.7, 126.0, 117.1, 111.7, 108.4, 101.2, 85.6, 81.4, 62.6, 26.9, 23.7, 19.4; MS m/z 428 (M⁺). Anal. Calcd for C₂₇H₂₈O₃Si: C, 75.66; H, 6.58. Found: C, 75.52; H, 6.74.

1-tert-Butyldiphenylsiloxy-6-phenyl-3-hexyne (47).

The enol phosphate **41** (105 mg, 0.131 mmol) was treated with 0.1 M SmI₂ in THF (6.5 mL, 0.65 mmol) and HMPA (0.33 mL) as above to give **47** (47 mg, 87%) as a colorless oil: IR (neat, cm⁻¹) 1605, 1590; ¹H NMR (300 MHz) δ 1.06 (s, 9H), 2.35–2.45 (m, 4H), 2.77 (br t, J = 7.3 Hz, 2H), 3.73 (t, J = 7.3 Hz, 2H), 7.16–7.27 (m, 5H), 7.34–7.45 (m, 6H), 7.68 (dd, J = 1.8, 8.1 Hz, 4H); ¹³C NMR (75 MHz) δ 141.0, 135.7, 135.5, 133.8, 129.7, 128.4, 127.7, 126.2, 80.8, 77.8, 63.0, 35.6, 26.9, 23.0, 21.1, 19.3; MS m/z 355 (M⁺ – ^tBu). Anal. Calcd for C₂₈H₃₂OSi: C, 81.50; H, 7.82. Found: C, 81.56; H, 7.92.

4-tert-Butyldiphenylsiloxy-1-cyclohexyl-1-butyne (48).

The enol phosphate 42 (93 mg, 0.12 mmol) was treated with 0.1 M SmI₂ in THF (6.3 mL, 0.63 mmol) and HMPA (0.32 mL) as above to give 48 (38 mg, 82%) as a colorless oil: IR (neat, cm⁻¹) 1590, 1470, 1450, 1430; ¹H NMR (300 MHz) δ 1.05 (s, 9H), 2.25–2.38 (m, 1H), 2.44 (dt, J = 2.2, 7.0 Hz, 2H), 3.74 (t, J = 7.0 Hz, 2H), 7.34–7.45 (m, 6H), 7.67–7.70 (m, 4H); MS m/z 333 (M⁺ – ^tBu); HRMS calcd for C₂₂H₂₅OSi (M⁺ – ^tBu) 333.1674, found 333.1685.

5-tert-Butyldimethylsiloxymethyl-1-(3,4-methylenedioxyphenylethynyl)-2,6,6-trimethyl-1-cvclohexene (49).

The enol phosphate 43 (55 mg, 0.069 mmol) was treated with 0.1 M SmI₂ in THF (3.5 mL, 0.35 mmol) and HMPA (0.2 mL) as above to give 49 (26 mg, 92%) as a colorless solid, which was recrystallized from Et₂O–MeOH to give prisms, mp 87– 88 °C: IR (CHCl₃, cm⁻¹) 2200, 1505; ¹H NMR (300 MHz) δ 0.06 (s, 6H), 0.90 (s, 9H), 1.01 (s, 3H), 1.27 (s, 3H), 1.95 (s, 3H), 2.07–2.11 (m, 2H), 3.39 (dd, J = 9.5, 9.9 Hz, 1H), 3.80 (dd, J = 4.4, 9.8 Hz, 1H), 5.95 (s, 2H), 6.74 (d, J = 8.1 Hz, 1H), 6.88 (d, J = 1.5 Hz, 1H), 6.95 (dd, J = 1.5, 8.1 Hz, 1H); ¹³C NMR (75 MHz) δ 147.4, 147.3, 141.2, 125.6, 124.6, 117.8, 111.3, 108.4, 101.2, 93.0, 87.1, 64.0, 46.2, 36.3, 31.3, 31.2, 28.5, 26.1, 22.9, 21.4, 18.4, –5.1; MS m/z 412 (M⁺). Anal. Calcd for C₂₅H₃₆O₃Si: C, 72.77; H, 8.79. Found: C, 72.64; H, 8.87.

1-Cyclohexyl-1-heptyne (50).

The enol phosphate 44 (2.16 g, 4.58 mmol) was treated with 0.1 M SmI₂ in THF (229 mL, 22.9 mmol) and HMPA (11 mL) as above, and the residue was finally distilled with a Kugelrohr at 140 $^{\circ}$ C and 40 mm Hg to give a 50 (610 mg, 75%) as a colorless oil, whose IR, 1 H NMR, 13 C NMR, and MS spectral data were consistent with reported ones. 4b

1-Ethynyladamantane (51).

The enol phosphate 45 (925 mg, 1.68 mmol) was treated with 0.1 M Sml₂ in THF (84 mL, 8.4 mmol) and HMPA (4.2 mL) as above to give 51 (175 mg, 65%) of a semisolid after distillation with Kugelrohr (150 °C, 25 mmHg). The ¹H NMR spectrum revealed the presence of 13% of 1-vinyladamantane, the acetylene derivative 51 could be purified by recrystalization from MeOH to yield a colorless solid, mp 79–81 °C (lit.^{4c} 80–81 °C), and IR, ¹H NMR and ¹³C NMR spectral data were consisted with reported ones.^{4c}

Acknowledgment.

We thank to Mr. K. Kawamura, Ms. K. Mushiake, Ms. M. Suzuki, Ms. A. Satoh, and Ms. Y. Maehashi, Pharmaceutical Institute, Tohoku University, for microanalysis, spectral measurements, and the preparation of the manuscript. The work was, in part, supported by JSPS Research Fellowships for Young Scientist.

References and Notes

- † JSPS Research Fellow for Young Scientists, 1994-1995.
- (1) Larock, R. C. Comprehensive Organic Transformations, A Guide to Functional Group Preparations; VCH Publishers, Inc. New York, 1989.

- (2) Julia, M; Paris, J.-M. Tetrahedron Lett. 1973, 4833-4836.
- (3) Kocienski, P. J.; Lythgoe, B.; Ruston, S. J. Chem. Soc., Perkin Trans. 1 1978, 829-834. Kocienski, P. In Comprehensive Organic Synthesis, Vol. 6; Trost, B. M.; Fleming, I.; Winterfeldt, E., Eds; Pergamon Press: Oxford, 1991, pp 987-996.
- (4) (a) Lythgoe, B.; Waterhouse, I. Tetrahedron Lett. 1978, 2625-2628. (b) Lythgoe, B.; Waterhouse, I. J. Chem. Soc., Perkin Trans. I 1979, 2429-2436. (c) Bartlett, P. A.; Green III, F. R.; Rose, E. H. J. Am. Chem. Soc. 1978, 100, 4852-4858.
- (5) Synthesis of acetylenes from α-sulfinyl ketones has been recently published: Satoh, T.; Itoh, N.; Watanabe, S.; Matsuno, H.; Yamakawa, K. Chem. Lett. 1994, 567-570.
- (6) Simpkins, N. S. Sulphones in Organic Synthesis, Pergamon Press: Oxford, 1993.
- (7) A part of this work has been published as a preliminary communication: Ihara, M.; Suzuki, S.; Taniguchi, T.; Tokunaga, Y.; Fukumoto, K. Synlett. 1994, 859-860.
- (8) Ihara, M.; Taniguchi, T.; Tokunaga, Y.; Fukumoto, K. J. Org. Chem. 1994, 59, 8092-8100.
- (9) Lu, Y.-F.; Fallis, A. G. Tetrahedron Lett. 1993, 34, 3367-3370.
- (10) Nakagawa, I.; Hata, T. Tetrahedron Lett. 1975, 1409-1412; Nakagawa, I.; Aki, K.; Hata, T. J. Chem. Soc., Perkin Trans. 1 1983, 1315-1318.
- (11) Trost, B. M.; Curran, D. P. Tetrahedron Lett. 1981, 22, 1287-1290.
- (12) Arseniyadis, S.; Yashunsky, D. V.; Dorado, M. M.; Alves, R. B.; Toromanoff, E.; Toupet, L.; Potier, P. Tetrahedron Lett. 1993, 34, 4927-4930.
- (13) Giard, P.; Namy, J. L.; Kagan, H. B. J. Am. Chem. Soc. 1980, 102, 2693-2698; SmI₂ was freshly prepared from Sm powder, purchased form Aldrich Chemical Company, Inc., and 1,2-diiodoethane in THF.
- (14) Otsubo, K.; Inanaga, J.; Yamaguchi, M. Teirahedron Lett. 1986, 27, 5763-5764. Inanaga, J.; Ishikawa, M.; Yamaguchi, M. Chem. Lett. 1987, 1485-1486. Molander, G. A. In Comprehensive Organic Synthesis, Vol. 1; Trost, B. M.; Fleming, I.; Scheriber, S., Eds.; Pergamon Press: Oxford, 1991, pp 251-275.
- (15) Trost, B. M.; Matsumura, Y. J. Org. Chem. 1977, 42, 2036-2038; 5% Na(Hg) was purchased form Wako Pure Chemical Industries, LTD.
- (16) Handa, Y.; Inanaga, J.; Yamaguchi, M. J. Chem. Soc., Chem. Commun. 1989, 298-299.
- (17) Künzer, H.; Stahnke, M.; Sauer, G.; Wiechert, R. Tetrahedron Lett. 1991, 32, 1949-1952.
- (18) Kende, A. S.; Mendoza, J. S. Tetrahedron Lett. 1990, 31, 7105-7108.
- (19) Dess, D. B.; Martin, J. C. J. Am. Chem. Soc. 1991, 113, 7277-7287.
- (20) Giblin, G. M.; Simpkins, N. S. J. Chem. Soc., Chem. Commun. 1987, 207-208.

(Received in Japan 8 June 1995; accepted 10 July 1995)